Nilai lim_(x→y)⁡ (sin⁡ x-sin⁡ y)/(x-y)=⋯

www.jagostat.com

www.jagostat.com

Website Belajar Matematika & Statistika

Website Belajar Matematika & Statistika

Bahas Soal Matematika   »   Limit   ›  

Nilai \( \displaystyle \lim_{x \to y} \ \frac{\sin x - \sin y}{x-y} = \cdots \)

  1. \( \sin x \)
  2. \( \sin y \)
  3. 0
  4. \( \cos x \)
  5. \( \cos y \)

(UM UNDIP 2010)

Pembahasan:

\begin{aligned} \lim_{x \to y} \ \frac{\sin x - \sin y}{x-y} &= \lim_{x \to y} \ \frac{2 \cos \frac{1}{2} (x+y) \sin \frac{1}{2} (x-y) }{x-y} \\[8pt] &= \lim_{x \to y} \ \frac{\sin \frac{1}{2} (x-y) }{x-y} \cdot \lim_{x \to y} \ 2 \cos \frac{1}{2} (x+y) \\[8pt] &= \frac{1}{2} \cdot 2 \cos \frac{1}{2}(2y) \\[8pt] &= \cos y \end{aligned}

Jawaban E.